
DCL - Distributed Computing Lab
Prof. Guerraoui Rachid

Main Supervisor
Dr. Voron Gauthier
Project Supervisor

Symbolic LLVM Memory
Sandboxing for Safe and
Deterministic
WebAssembly-Based Execution
Xavier Ogay - 301681 - xavier.ogay@epfl.ch

Abstract
This work presents a symbolic sandboxing framework for
securely and efficiently executing WebAssembly-based smart
contracts within a deterministic, replicated execution model.
The system targets Droplet, an ahead-of-time compiler
producing shared objects from WASM modules, and enhances
it by statically emitting memory safety checks at the LLVM
IR level. By leveraging symbolic expressions to reason
about memory access patterns, especially in loops and across
multiple basic blocks, the framework reduces redundant
runtime instrumentation while preserving strong spatial safety
guarantees.

Keywords: WebAssembly, symbolic expression, LLVM, mem-
ory sandboxing, smart contracts, static analysis

Introduction
Decentralized systems such as blockchains rely on
replicated state machine execution to ensure consis-
tency across mutually untrusted nodes. Every node
re-executes submitted transactions deterministically,
enforcing convergence on a global state. This execution
model secures real-world assets—including money, prop-
erty, and identities—but it imposes strict correctness
guarantees: execution must be deterministic. Any
deviation in execution results across replicas may lead to
failure—potentially resulting in permanent financial loss
or corrupted state within the blockchain.

Historically, consensus protocols were the domi-
nant performance bottleneck. However, advances in
high-throughput consensus algorithms and transaction
parallelism have shifted the limiting factor to the exe-
cution layer. In this new landscape, the cost of safely

executing smart contracts has become a primary concern.

Figure 1 outlines the end-to-end pipeline targeted
for smart contract compilation and execution. Clients
author contracts in their preferred source language and
compile them to WebAssembly (WASM), which acts
as a portable, sandboxed intermediate representation.
WASM guarantees determinism across diverse language
frontends and serves as the canonical entry point for
further processing.

On the server side, the Droplet ahead-of-time (AOT)
compiler takes over. It parses WASM into an internal
stack-based intermediate representation called SMIR,
which introduces basic block structure while retaining
stack discipline. SMIR is then translated into LLVM IR,
a static single assignment (SSA) form. The resulting
LLVM bitcode is compiled to a .so shared object,
which encapsulates the native code version of the smart
contract.

The final .so file is handed off to Drizzle, a WIP
runtime system responsible for scheduling contract
execution. Drizzle operates in batch mode, using mi-
crosection analysis to execute multiple smart contract
calls in parallel when their memory regions do not conflict.

We focuse on extending Droplet with a symbolic
sandboxing framework for static memory safety enforce-
ment. All contributions are integrated directly into the
Droplet compiler pipeline, operating at the LLVM IR
level. The objective is to emit memory bounds checks
statically during compilation—rather than dynamically at
runtime—thereby reducing overhead while upholding the

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

determinism and spatial safety guarantees essential in
replicated execution environments.

The initial goal of this project was to explore Sea of
Nodes (SoN) representations as a foundation for precise
memory check placement. However, given the techni-
cal complexity of rewriting Droplet’s intermediate repre-
sentations, combined with my limited prior experience in
compilation, LLVM, and Rust, this proved too ambitious
for the project timeline. As a result, the focus shifted
to designing a symbolic analysis tool capable of track-
ing memory access patterns across functions and control-
flow constructs, especially for loop-heavy and multi-block
regions. The resulting symbolic infrastructure lays the
groundwork for advanced memory reasoning and can later
serve as a companion layer to a full SoN-based optimiza-
tion system—forming a versatile toolset for safe and effi-
cient memory instrumentation.

Overview and Contributions
We present a new memory sandboxing framework built
into the Droplet compilation pipeline, targeting We-
bAssembly smart contracts compiled to LLVM IR. Our
approach is based on symbolic reasoning at compile
time over memory access patterns, enabling us to stat-
ically identify bounds and insert minimal, provably safe
memory checks.
By representing memory addresses using symbolic ex-

pressions, tracking loop induction variables, and propa-
gating constraints across control-flow, our system hoists
and deduplicates bounds checks. This leads to substantial
performance gains while preserving strict spatial safety.

Our main contributions are:

• SymExpr: A custom symbolic expression framework
supporting canonicalized memory reasoning and anal-
ysis.

• SymbolicState: A basic block state with inter-block
merging and propagation mechanisms.

• Memory Check Optimization: Loop-aware check
hoisting and intra-block grouping to reduce instru-
mentation overhead.

• Evaluation on Real Code: Compilation and execu-
tion of test code, demonstrating up to 85% overhead
elimination.

Background
Deterministic Replicated Execution
In replicated smart contract systems, such as blockchains,
all nodes must execute the same code with identical re-
sults to maintain consensus. These systems follow the
model of State Machine Replication, where each node

Figure 1: Droplet Context Overview

runs an identical deterministic program on a shared se-
quence of inputs. This ensures consistency across repli-
cas even in adversarial or distributed environments. Non-
determinism—especially from memory access violations or
race conditions—can break this model, leading to diverg-
ing states and catastrophic failure.

WebAssembly and Its Linear Memory Model
WebAssembly (WASM) adopts a flat linear memory
model: a single contiguous, byte-addressable region
representing the module’s memory. All load and store
operations are expressed as offsets from this unified base,
simplifying static analysis.

When lowered to LLVM IR, Wasm memory appears as
i8 arrays, enabling fine-grained reasoning about byte-level
access patterns. This uniform layout, free from traditional
allocator fragmentation, allows symbolic analysis and
bounds check insertion to focus solely on base-relative
offsets.

LLVM IR and SSA Form
LLVM IR represents programs in Static Single Assignment
(SSA) form, where each variable is defined exactly once
and every use refers to a unique definition. This property
simplifies dataflow analysis, making it easier to track value
provenance and transformations.

Symbolic Expression Concepts
Symbolic expressions (SymExpr) represent program values
and memory addresses not as concrete numbers, but as
algebraic expressions over variables. In our context, these

Page 2

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

expressions are constructed during compilation to model
the result of computations such as arithmetic operations,
pointer offsets, or loop-based indexing. Each expression
captures not just a value, but the computation that
produced it.
This symbolic representation enables the compiler to

reason about the equality or equivalence of different
expressions at compile time. For instance, if two memory
accesses share the same symbolic address, they are
guaranteed to refer to the same location, and a previously
validated bounds check may be safely reused. Likewise,
symbolic expressions can be compared to determine
containment within memory regions, or to infer the full
range of addresses accessed by a loop.

Phi Nodes and Symbolic Ambiguity
LLVM IR uses phi nodes to merge values from multiple
control-flow paths into a single SSA variable. While
essential for expressing loops and branching, phi nodes
introduce ambiguity in symbolic analysis—each incoming
value may correspond to a different symbolic expression.
To maintain soundness, our system conservatively wraps
such merged expressions using the OneOf construct,
representing the union of all possible values. This
conservative modeling ensures safety but may limit
optimization opportunities if value disambiguation is not
possible.

Control-Flow Graphs and Dominator Trees
A Control-Flow Graph (CFG) models the execution flow
between basic blocks in a function. Dominator trees are
derived from CFGs to identify blocks that must precede
others on all paths. These structures are crucial in our
system for loop detection, safe state propagation, and
sound placement of hoisted memory checks.

Loop Detection and Induction Variables
Loops are identified as natural cycles in the CFG via back-
edge detection. Within loops, induction variables are used
to describe predictable iteration patterns. We leverage
them to model symbolic memory access ranges and to
emit single memory checks at loop headers, optimizing
performance while maintaining safety.

Design
To introduces a symbolic sandboxing mechanism for
securely executing WebAssembly-based smart contracts
compiled into native .so modules, the core idea is to
statically emit memory bounds checks during compilation
to enforce spatial safety at runtime, ensuring all memory
accesses stay within the expected sandboxed region.
Thanks to WASM’s linear memory model, emitting
bounds checks is simpler, as all accesses are relative to
a single contiguous base, unlike in buddy allocators where
memory is partitioned and harder to track statically.

Memory Group Checking via LLVM IR
We target the LLVM IR emitted from WASM modules,
leveraging its SSA form and structured control flow to
reason about memory accesses. The goal is to determine
the minimal and maximal bounds of access for each
group of related memory operations and insert a single
check guarding the entire group. This avoids redundant
checks and improves performance while retaining safety
guarantees.

Assumption-Based Check Elision (Preliminary)
An early design component of the symbolic tracking sys-
tem included the notion of assumptions, which capture
semantic conditions implied by the original LLVM IR
code. These assumptions—such as bounds comparisons
or pointer range tests—could be harvested from existing
instructions like icmp and interpreted as constraints
over SymExpr expressions. The vision was to allow such
assumptions to be explicitly tracked in the symbolic state
and leveraged to suppress redundant memory checks
when a valid constraint implied safety.

In practice, while the infrastructure for recording
assumptions (assumptions field in SymbolicState) is
partially implemented, full integration into the check
emission logic was deferred to ease the merging of
SymbolicState. Development focused instead on loop
hoisting and access pattern merging, especially within
opt2 and opt3 modes, where the performance benefits
were more immediate. Incorporating assumption-based
reasoning remains a promising direction for reducing
unnecessary instrumentation in future extensions.

Initial Strategy: Symbolic Deduplication
The first strategy was to track every load and store
instruction individually. Using symbolic expressions, each
memory address was represented symbolically, and checks
were inserted only if an equivalent or covering check
had not been previously emitted. While this approach
reduced overhead compared to naive instrumentation, it
struggled with loops: checks were frequently reinserted
inside loop bodies, incurring performance penalties due
to repeated validations.

Refined Strategy: Function-Wide Symbolic Analysis
The second strategy introduced function-wide symbolic
state tracking and loop-aware optimization. For every
function reachable from the droplet_entry entry point,
we analyze its basic blocks in control-flow order, assigning
each a SymbolicState representing known expressions,
assumptions, and memory access intents.

These states are initially assigned independently to
each basic block and then merged conservatively in re-
verse post-order across the control-flow graph (CFG) to

Page 3

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

accumulate symbolic context. Natural loops are detected
using CFG analysis and dominator tree construction. Af-
ter loop structures are identified, a fixed-point refinement
process is applied to the symbolic states of all blocks
within each loop, stabilizing access patterns and state
across iterations.

To ensure correct refinement in the presence of nested
loops, the analysis detects loop nesting hierarchies and
processes loops in an inside-out manner. Innermost loops
are refined first, allowing their stabilized symbolic states
to inform the refinement of outer loops. This ordering
guarantees that dependencies between nested structures
are resolved accurately and that induction relationships
are fully established before they are reused in surrounding
contexts.

Only once this refinement is complete, memory ac-
cesses that depend on loop induction variables are ana-
lyzed for symbolic bounds. Access patterns are then sum-
marized using range analysis, and a single bounds check
for maximum and minimum access address is inserted out-
side the loop in a new block. This hoisting prevents re-
dundant validations within the loop body and substantially
reduces runtime overhead. An example of nested loop
hoisting is illustrated on figure 2 .

Figure 2: Control-flow graph of a nested loop function,
its sandboxed variant, and the corresponding dominator
tree.

Post-Loop and Residual Check Insertion
After loop optimization, all basic blocks are revisited.
For blocks not involved in loops, memory accesses are
grouped using symbolic pattern matching, and minimal/-
maximal range checks are inserted at the block entry.
These checks guard all access in the group. For blocks
that are part of loops but perform memory accesses
not driven by loop induction, naive memory checks are
inserted.

In future extensions, failing blocks could fall back to
the original mem_check instrumentation, as seen in prior
work [1], enabling precise error reporting. Currently, if
symbolic reasoning fails to prove safety, compilation fails,
ensuring correctness is never compromised.

Implementation
Memory Check Runtime Stub
Memory accesses are guarded using a dedicated runtime
check function from previous work [1] emitted into the
LLVM IR of each compiled module. As shown in Listing 1,
the mem_check function receives three pointers: the
memory base, the offset, and the target access address.
It computes the effective access pointer using a GEP
operation, then verifies that the target lies within the
permitted bounds.

This function is emitted as a reusable subroutine rather
than inlined by default. This design choice enables easier
transformation and potential reuse across multiple access
sites. In particular, it facilitates inter-pass check elision:
redundant checks can be removed by identifying identical
call sites or equivalent preconditions.

However, to balance performance, the system supports
an inline-memory-check flag. When enabled, this
annotates the mem_check function to be preferentially
inlined during code generation. Inlining can eliminate
function call overhead and improve branch prediction,
especially in tight loops or frequently executed paths,
while preserving the logical structure for optimization
passes.

Listing 1: LLVM memory check function
define void @mem_check(ptr %0, ptr %1, ptr %2) {

%4 = load ptr , ptr %0, align 8
%5 = load i64 , ptr %1, align 4
%6 = getelementptr i8 , ptr %4, i64 %5
%lower = icmp uge ptr %2, %4
%upper = icmp ult ptr %2, %6
%cond = and i1 %lower , %upper
br i1 %cond , label %common.ret , label %error

}

Symbolic Expression (SymExpr)
The core abstraction enabling static memory check
reasoning in our toolchain is the symbolic expression.
SymExpr defines a symbolic algebra over memory-relevant
computations, capturing value computations symbolically
rather than concretely.
The model includes:

• Const(i64): Concrete literals.

• Var(String): SSA variables or Phi variables.

• Add, Sub, Mul, Div, ShiftL, Lshr, And: Arithmetic
and bitwise operations.

Page 4

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

• Min, Max: Bounds expression modeling.

• Load(SymExpr, u32) and Store(SymExpr): Sym-
bolically abstract memory operations. Each Store
represents a write to a symbolic address. The Load
expression is annotated with a unique counter that
captures the store epoch—the current value of the
global store_counter at the time the load is an-
alyzed. This counter increases conservatively after
any memory write operation with potential overlap-
ping address(e.g., a Store, a call to an unknown
function, ensuring that loads are uniquely tied to the
visible memory state at their point of occurrence.
This mechanism enables intra-function memory dis-
ambiguation: when optimizing memory checks, two
loads to the same symbolic address but under dif-
ferent store epochs are treated as potentially ob-
serving different memory states, and thus cannot be
deduplicated. Those are build along the Symbolic-
State progress in basic blocks exploration explained
in memory_accesses.

• OneOf(Vec): Represents conditional symbolic ex-
pressions used for certain case of state merging

This representation allows us to statically model most
pointer arithmetic and memory access ranges of the
current Droplet outputs. Expressions are canonicalized:
for example, a + b is ordered lexically to ensure commu-
tativity, and a * 1 simplifies to a. These transformations
enable semantic deduplication during check insertion
by ensuring that equivalent expressions are structurally
identical.

To further enhance this capability, expressions are nor-
malized into a form that approximates linear arithmetic
when possible. For instance, symbolic forms like 3 * i +
4 * j + 10 are internally reduced into structured linear
combinations, which aids in equivalence testing, offset
analysis, and range evaluation.

Equality is implemented structurally through
PartialEq and Hash, backed by string representa-
tions of canonical forms. This approach allows the use
of set-like structures (e.g., checked_sym_exprs) to
track previously validated memory accesses. However,
maintaining this canonicalization becomes increasingly
complex as new operations (e.g., ShiftL, Min, OneOf)
are introduced. Each addition requires consistent
handling in both expression simplification and string
representation, creating a nontrivial engineering cost.
Still, this rigor is essential for achieving safe and sound
symbolic analysis throughout the compilation pipeline.

Assumptions and ValueRange
To improve the accuracy and applicability of symbolic
memory checks, the system introduces the concept
of assumptions—optional constraints associated with

symbolic variables that define their possible value bounds.
These are encoded as a RangeAssumptions map, asso-
ciating each variable name with a tuple of minimum and
maximum values (if known). For example, an assumption
such as x ∈ [0, 10] allows the symbolic analysis to
reason concretely about expressions involving x.

The ValueRange abstraction encapsulates symbolic
lower and upper bounds for a memory address or group
access range. Using assumptions, the system can
perform:

• Containment checks: determine whether a sym-
bolic expression lies within a symbolic range.

• Overlap checks: test whether two symbolic ranges
intersect or are disjoint.

• Memory fit validation: verify that a symbolic range
fits within a preconfigured memory size.

These operations support both approximate and exact
modes. Approximate reasoning provides conservative
under- and over-estimates using partial bounds inferred
from assumptions. Exact reasoning requires complete
bounds for all participating variables and enables precise
verification of symbolic constraints.

This framework enables more aggressive memory
check elimination. When assumptions derived from
the control-flow context (e.g., conditional branches,
loop guards) imply that a memory access is safe, the
corresponding mem_check call may be statically removed.

Currently, the system resolves only simple cases
such as constant-bounded variables or expressions that
simplify directly (e.g., 10 > x > 1). However, with
further integration effort, it could be linked to an external
symbolic inequality solver API to support richer inference
and constraint propagation.

Note: This assumption-based simplification framework
is not enabled in evaluation mode due to time constraints
in development —due to prioritization of loop hoisting
and generic pattern extraction— nonetheless it provides
a structured basis for future symbolic equivalence and
constraint tracking.

The Symbolic State
The SymbolicState structure accumulates symbolic
reasoning across LLVM IR instructions. It maintains:

• value_exprs: Maps LLVM integer values to
SymExprs.

• instr_exprs: Maps instructions to their derived
expressions.

Page 5

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

• memory_accesses: Tracks memory loads/stores
with their access range.

• checked_ranges: Memorizes already instrumented
address ranges.

• assumptions: Deduces value constraints from icmp
comparisons.

• mem_access_addr: Maps loads/stores to symbolic
addresses.

• induction_vars: Tracks loop induction patterns
(e.g., i in start..end).

It is built by analyzing each instruction within a
BasicBlock, extracting symbolic expressions and memory
access metadata. During this pass, a dedicated handler
processes each relevant instruction opcode:

• Arithmetic and pointer arithmetic instructions
(add, sub, mul, shl, getelementptr, etc.) are
symbolically evaluated and stored in value_exprs
and instr_exprs.

• Load/store operations update memory access
metadata. Loads are tracked with a unique prove-
nance counter and associated symbolic address
in mem_access_addr, while stores increment the
store_counter and update memory_accesses.

• Phi nodes are parsed to identify loop induction
patterns, inserting entries into induction_vars.

• ICmp instructions are analyzed to derive value con-
straints, which are accumulated in the assumptions
map.

• Function calls are classified as safe or unsafe.
Unsafe or unknown calls conservatively increment the
store counter and mark potential memory growth.

Each BasicBlock receives its own independently
constructed SymbolicState, which serves as a symbolic
snapshot of its internal semantics propagated along the
control-flow graph (CFG) using a reverse post-order
traversal. This traversal ensures that predecessor states
are merged into a block’s state before that block is
analyzed, preserving dominance relationships.

Merging is done conservatively: only information that
is consistent across all incoming states is preserved
and in OneOf if related to address. This conservative
strategy is essential to soundness—it guarantees that any
optimization decisions made (such as eliding a memory
check) are valid across all possible execution paths.
Despite this caution, a significant amount of useful
information is retained due to the SSA form of LLVM IR.

Key fields, such as the store_counter, are merged
using max-semantics to preserve upper bounds for check
placement logic. Symbolic expressions for values and
instructions are merged using a conservative symbolic
join via SymExpr::merge_conservative, or wrapped in
OneOf when ambiguity arises.

This propagation is further refined within loops using
fixed-point analysis. Loop are iteratively reanalyzed using
merged states from the loop body, allowing symbolic
bounds (from induction variables and range assumptions)
to stabilize. This process allows loop-aware optimizations
that are both safe and effective in reducing redundant
memory checks.

Listing 2: Symbolic value expression updates across loop
iterations
Value Expressions:

"%30 = load i64 , ptr %29, align 4" =>
OneOf ([(([v0x5ac6587e11a0]%0 + v0x5ac6587ec3c8) +

16)]%2, [(([v0x5ac6587e11a0]%0 +
v0x5ac6587ec3c8) + 16)]%4)

"%35 = load i64 , ptr %34, align 4" =>
[(([v0x5ac6587e11a0]%0 + v0x5ac6587ec3c8) + 24)]%3

"%25 = load i64 , ptr %24, align 4" =>
OneOf ([(([v0x5ac6587e11a0]%0 + v0x5ac6587ec3c8) +

8)]%1, [(([v0x5ac6587e11a0]%0 +
v0x5ac6587ec3c8) + 8)]%4)

"%20 = load i64 , ptr %19, align 4" =>
[([v0x5ac6587e11a0]%0 + v0x5ac6587ec3c8)]%0

Tracking Memory Accesses and Store Counter
Memory tracking in SymbolicState relies on two
core mechanisms: the memory_accesses map, which
records symbolic load and store expressions along with
their access ranges, and the store_counter, a global
monotonic counter used to tag the provenance of load
expressions.

Each load is tagged with the current value of the
store_counter when it is first encountered via the
add_load_memory_access method. This counter is
incremented on any store instruction or on encountering
function calls that may alter memory state. The purpose
is to conservatively distinguish between loads made before
and after potentially interfering writes. However, if the
memory region accessed by the function is known and
safe, or if the call is annotated as harmless (e.g., intrinsic
or known allocation routines), the counter is not updated.

In the handle_call function, calls to safe functions
(such as mem_check or any function explicitly marked
as non-interfering) are ignored. For potentially unsafe
calls (unknown)memory_accesses is cleared or pruned
depending on whether the base pointer is retained. This
ensures that all tracked load/store metadata reflects
memory that has not been overwritten or modified
indirectly.

Page 6

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

For store instructions, the add_store_memory_access
method scans all previously recorded accesses and re-
moves any whose address range may overlap with the
store. This operation is guided by symbolic disjointness
checks, using is_disjoint_exact. If the memory
access is outside the currently tracked base pointer, or
if the overlap cannot be ruled out, the corresponding
entries are invalidated.

The store_counter enables fine-grained tracking of
memory modification timing. By associating loads with
the counter state at the point of their insertion, and
updating the counter only when unsafe or overlapping
memory writes occur, the symbolic system can conser-
vatively preserve memory access knowledge across safe
paths—especially valuable in loop analysis and inter-block
optimizations.

Loop-Aware Optimization
Loops are detected using dominator tree analysis and
control-flow graph (CFG) back edges[2]. Each natural
loop is characterized by a header and a tail (a back edge
source), from which the full loop body is collected.

Within loops, Symbolic states are refined through fixed-
point iteration over the loop body. This iterative process
ensures a stable symbolic summary of memory access
behavior under loop-induced transformations.
Memory accesses in loops are summarized in a structure

called LoopMemoryContext. This context encapsulates:

• Induction variables and their start, step, and update
patterns

• Symbolic memory access expressions tied to induc-
tion

• Derived symbolic bounds for access ranges

• Canonical symbolic range and step size expression for
total memory footprint

The symbolic step is inferred using the LoopStepKind
abstraction (Add, Sub, Mul), with helper methods to
deduce concrete steps when possible. This enables both
algebraic manipulation and concrete estimation of loop
iterations.
For example, consider the loop:

f o r (i n t i = 0 ; i <= 10 ; ++ i) {
l o a d (base + i ∗ 8) ;
}

Symbolically, this is represented by a start at base, a step
of 8, and a bound at base + 80. The symbolic engine
identifies i as the loop induction variable, extracts the
constant bound from the ICmp comparison, and models

the address expression base + i * 8.

The optimizer emits a single memory check before
loop entry that guards the entire access region:
check(base, base + 80).

If the stride or iteration bound is symbolic or only par-
tially known, a conservative symbolic range is constructed
using a fallback expression of the form: check(base,
base + (bound - start) * step).

However, it is often the case that the induction variable
governing the loop’s stop condition differs from the one
used directly in the memory access expressions. To
correctly derive a safe check range in such cases, the
analysis first computes the number of loop iterations
based on the induction variable controlling the loop exit.
Then, using the symbolic access patterns associated with
memory operations, it determines the maximum and
minimum symbolic offset contributed by the memory-
related induction variable(s). The final range is computed
by multiplying the total number of iterations by this
maximum/minimum symbolic stride, and adding it to
the base expression. This enables the derivation of a
conservative but tight upper and lower bound even in
the presence of multiple, potentially disjoint induction
variables.

This loop-aware strategy significantly reduces redun-
dant runtime checks, particularly in nested or long-running
loops, by validating access ranges statically.

Memory Access Modeling and Grouping
Each load or store is analyzed to extract a symbolic
address expression. These addresses are tracked per
instruction and used to form access pattern groups, which
identify recurring memory patterns such as loop-strided
accesses.
For instance, all accesses of the form base + i * 8

+ k for fixed k within a loop body are grouped together.
These groups enable emitting a single bounds check for
the entire range instead of per-instruction checks.
Grouping is applied both:

• Intra-block: Within individual basic blocks.

• Inter-block: Across loop boundaries, inserted at pre-
headers.

Memory Check Insertion Strategy
Memory check insertion is governed by configurable
compilation modes, controlled via feature flags during the
cargo build process. These modes represent increasing
levels of sophistication in symbolic reasoning and check
elimination, corresponding to evaluation variants:

• No Emission (base): No memory checks are
inserted. This baseline variant serves to isolate
transformation overhead without safety enforcement.

Page 7

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

• Naive (check): A direct bounds check is emitted
for every load/store instruction. This serves as
a correctness baseline and reflects typical runtime-
enforced sandboxing.

• Redundancy-Aware Naive (opt1): This variant ex-
tends the naive mode by avoiding repeated checks on
memory addresses that have already been validated
in the current symbolic context. Symbolic expres-
sions are matched using SymExpr representations and
deduplicated via the checked_sym_exprs registry in
the symbolic state.

• Grouped Intra-block + Naive Inter-block (opt2):
In this configuration, intra-block memory accesses
are grouped by symbolic similarity and only one
representative check is emitted per group. For loop-
related access patterns, checks are hoisted to loop
headers using induction-bound analysis. Inter-block
accesses not related to induction variables fall back
to naive checking within their respective blocks.

• Fully Optimized Grouped Emission (opt3): In
the context of loop optimization, opt3 attempts
to treat the entire loop body—even when spanning
multiple basic blocks—as a single unit. It hoists
all memory checks, including those not directly
tied to induction variables, to the loop header by
statically resolving their safety through symbolic
reasoning. If symbolic constraints are insufficient to
prove the bounds soundly, the transformation fails
at compile time to preserve safety—no fallback is
inserted. The intended future direction is to switch
dynamically to a safer strategy, akin to opt2, where
non-induction related accesses within the loop fall
back to naive checks for the remainder of the loop
execution. However, this runtime recovery path was
not implemented in the current prototype, meaning
that symbolic failure in opt3 results in compilation
failure rather than a soft fallback.

Optimizations rely on canonicalized symbolic address
expressions and precise grouping of memory accesses.
Key insertion strategies include:

• Loop-aware Inter-block Checks: Memory access
patterns referencing loop induction variables are an-
alyzed through the LoopMemoryContext structure.
These patterns are symbolically summarized to cap-
ture the full range of accessed memory addresses
across all iterations. A single memory check for min
and max value is inserted before the loop (typically
in a pre-header block) to validate the entire access
range. This avoids per-iteration checks while main-
taining safety.

Listing 3: Inter-block memory check inserted before loop
mem_check_block: ; preds = %3

%base = load ptr , ptr %1, align 8
%base_plus_offset = getelementptr i8, ptr %base ,

i64 %0
%base_plus_offset1 = getelementptr i8, ptr %

base_plus_offset , i64 824
call void @mem_check(ptr %1, ptr %2, ptr %

base_plus_offset1)
call void @mem_check(ptr %1, ptr %2, ptr %

base_plus_offset)
br label %10

This example demonstrates a typical pre-header
insertion for a loop ranging from i = first
argument of the function to i < 100, where
the maximum symbolic offset is statically known to
be 824 bytes (800 from iteration steps and 24 from
unrolling effects).

Note: As checks are inserted at the start of the pre-
header block, any address computation or induction
value required must be hoisted or recomputed at this
location. This may involve instruction duplication or
transformation if the needed values are not yet in
scope.

• Intra-block Grouped Checks: Within a single
basic block, memory accesses are grouped according
to their symbolic address pattern. Each group
emits a single memory check (min/max) for the
combined address range. This strategy benefits
from LLVM’s SSA form, where variable identities are
stable within a block, allowing precise deduplication
and aggressive minimization of redundant checks.
However, memory check insertion must respect
instruction dependencies—if a check relies on values
produced by earlier instructions (e.g., loads), it
cannot be placed at the block’s entry but must follow
those instructions. Conversely, when the required
values are not themselves memory-dependent within
the same block, these computations can be safely
relocated to the beginning of the block, enabling early
check insertion. checks.

• Fallback Avoidance: In opt3 mode, fallback to
naive check insertion is explicitly disabled. Only
access patterns that are provably safe using symbolic
analysis are allowed. If no safe symbolic range can be
established, the transformation fails at compile time.
This ensures early detection of unsupported patterns
and enforces a safety-by-construction principle during
development and evaluation.

This stratified check insertion strategy was designed
specifically for evaluation purposes, allowing controlled
comparison of performance, safety, and transformation
robustness across progressively optimized modes.

Evaluation
Benchmark Structure and Methodology
To evaluate the performance impact of our symbolic
sandboxing pipeline, we compiled and executed a suite

Page 8

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Table 1: Benchmarking results showing average execution times (in microseconds) for each implementation variant. The table
includes absolute runtimes (mean ± standard deviation) and relative speedups compared to the baseline check implementation.

Benchmark No sandbox [µs] Check (naive) [µs] Opt1 [µs] Opt2 [µs] Opt3 [µs] SU (check→opt1) SU (check→opt2) SU (check→opt3)

2d 0.47± 0.35 1.36± 0.45 0.94± 0.39 0.54± 0.24 0.52± 0.21 31% 60% 62%
add1 0.35± 0.37 1.47± 0.85 0.76± 0.51 0.37± 0.36 0.37± 0.29 48% 75% 75%
addbounded 2.75± 0.43 29.04± 6.42 16.42± 1.92 4.42± 1.53 4.51± 1.64 43% 85% 84%
conditional 1.75± 0.66 2.78± 2.28 2.74± 0.96 2.26± 0.86 – 2% 19% –
fibonaccilike 0.44± 0.24 1.29± 0.47 1.30± 0.69 0.58± 0.64 – −1% 55% –
matrix 2.58± 3.41 7.41± 3.35 7.39± 3.33 2.60± 4.32 – 0% 65% –
nested 0.37± 0.49 1.75± 0.61 0.83± 0.62 0.49± 0.61 0.48± 0.47 53% 72% 73%
prefix 0.49± 0.44 1.56± 0.74 0.94± 0.57 0.48± 0.33 – 40% 69% –
redundant 0.36± 0.34 1.47± 0.74 0.76± 0.38 0.38± 0.42 0.36± 0.16 49% 74% 75%
reverse 0.39± 0.27 1.18± 0.56 0.78± 0.62 0.40± 0.52 0.38± 0.26 34% 66% 68%
slidewindow 0.66± 0.49 1.62± 0.67 1.60± 0.57 – 0.71± 0.27 1% – 56%
stride 0.29± 0.13 0.67± 0.30 0.47± 0.31 0.33± 0.43 0.32± 0.29 30% 51% 52%

of representative benchmarks under multiple optimization
configurations. Each benchmark was run in a simulated
multi-contract environment, where multiple .so modules
were loaded sequentially in random order to emulate cache
effects and scheduling variability. To explore sensitivity
to input scale and runtime conditions, we used two batch
sizes of 65 536 and 32 464 executions for each benchmark.

A detailed description of the visualization format and
per-benchmark analysis is provided in Appendix .

However, the complexity of the test kernels was con-
strained by current limitations of the Droplet toolchain.
The current SMIR layer supports only a minimal subset
of operations—many data types such as f32 and f64
currently only implement constant values. As a result,
the benchmarks focus on integer-based arithmetic and
control-flow patterns that exercise memory access and
sandboxing logic, while avoiding unsupported features at
the IR level.

The test suite emphasizes loop-centric computations,
as the most impactful optimizations in this work target
inter- and intra-block memory check elimination within
fixed point constructs. Additionally, a range of tests
was conducted to verify the correctness and coverage
of memory safety checks. Although memory safety is
enforced at the granularity of WebAssembly pages across
the entire smart contract address space, our experiments
confirm that any access performed outside those bounds
was consistently and reliably detected by the inserted
checks.

In some of these correctness-focused tests, the sys-
tem—being a research prototype developed under time
constraints—occasionally failed to compute valid bounds
for merging access groups due to unhandled symbolic edge
cases. While a fallback to naive checking would be ap-
propriate in a production-grade pipeline, the current im-
plementation aborts compilation upon such errors. As a
result, a small number of tests could not be compiled
successfully and thus do not appear in the reported per-
formance results.

Setup
All benchmarks were executed on a laptop running
Arch Linux with kernel version 6.14.6-arch1-1. The
machine is equipped with a 12th Gen Intel® CoreTM i7-
1265U CPU, 15GiB of RAM, and a 953.9 GB NVMe
solid-state drive (PC801). Compilation was performed
using gcc version 15.1.1 (20250425) and clang version
19.1.7. Although the system includes an integrated
GPU (reported as 02.0 VGA compatible controller),
all benchmark execution and compilation were performed
on the CPU. This configuration reflects the hardware
constraints of a student research environment and may
not represent high-end server performance.

Question
What is the performance cost of introducing symbolic
memory safety instrumentation in WebAssembly-based
smart contract runtimes, and how effectively can symbolic
compilation optimizations mitigate this cost? Specifically,
we aim to quantify the overhead of naive memory checks
and measure the performance gains from progressively
applied optimizations across a range of computational
patterns.

Observation
Across all benchmarks, naive memory sandboxing in-
troduces a substantial runtime overhead relative to the
no-check baseline—ranging from 1.5× to over 10×.
For instance, the addbounded benchmark increases from
2.75µs to 29.04µs under naive checking. However, suc-
cessive application of optimizations (Opt1–Opt3) yields
notable reductions. On average, Opt1 recovers 30–50%
of the overhead, while Opt2 and Opt3 often surpass
70–80% overhead reduction, with some benchmarks
nearly matching the no-check baseline (e.g., add1 and
reverse). Variance also tends to decrease with deeper
optimization.
There are exceptions. Benchmarks like conditional,

fibonaccilike, and slidewindow show limited or
inconsistent speedups in Opt1, with more substantial gains
only appearing in later stages (Opt2/Opt3) or not at all.
Some tests (e.g., matrix, fibonaccilike) show high
baseline variance due to data-dependent execution paths.

Page 9

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Deduction
The overhead introduced by naive sandboxing stems
primarily from repeated dynamic memory bounds checks,
which dominate small kernels with tight loops or many
accesses (addbounded, nested, redundant). The initial
optimization stage (Opt1) typically eliminates redundancy
and coalesces checks within individual blocks, which
explains the consistent 30–50% gain across benchmarks.
Opt2 improves upon this by performing inter-block loop-

aware coalescing, allowing checks across iterations or
across multiple control-flow paths to be merged, particu-
larly effective in benchmarks with structured control flow
and predictable memory access patterns (2d, matrix,
nested).
Opt3 enhances this by restructuring basic blocks to

consolidate memory checks at the beginning of each
block and by merging access pattern groups when safe.
This avoids scattered or repeated checks and is espe-
cially impactful in tight control-flow kernels where multi-
ple accesses follow similar bounds (reverse, redundant,
stride). In contrast, benchmarks with dynamic branch-
ing or highly data-dependent access patterns (e.g.,
conditional, fibonaccilike) resist full optimization,
as conservative analysis prevents safe merging or reloca-
tion of checks.

Conclusion
Symbolic memory sandboxing introduces measurable
overhead, but our pipeline significantly reduces its
impact. For most benchmarks, Opt2 and Opt3 recover
60–80% of the naive overhead, often reaching near-
baseline performance. The approach is especially effective
on regular access patterns, predictable control flow, and
loop-dominated workloads. However, optimization is less
effective in data-dependent or branching-heavy kernels,
where static reasoning is harder.
These results validate the practical viability of

compile-time symbolic sandboxing for WebAssembly
smart contract runtimes, striking a strong balance be-
tween safety and efficiency, especially when higher-level
symbolic reasoning is applied.

Future Work: Integrating SymExpr with Sea of Nodes
While this project focused on symbolic sandboxing
within Droplet’s SSA-based LLVM IR pipeline, a natural
extension would be to introduce a Sea of Nodes (SoN)
intermediate representation. SoN structures programs
as graphs of operations, enabling powerful global opti-
mizations such as value numbering, loop-invariant code
motion, and precise dataflow tracking.

A viable integration strategy would preserve SymExpr as
the core semantic layer while using SoN as the structural
IR. Each SoN node would carry an optional symbolic
payload:

Listing 4: Proposed SoN node design

pub s t r u c t SonNode {
pub i d : NodeId ,
pub opcode : SonOp ,
pub i n p u t s : Vec<NodeId > ,
pub symexpr : Opt ion <SymExpr > ,
}

This design cleanly separates concerns: SoN captures
control, data, and memory dependencies; SymExpr
expresses semantics for reasoning, equivalence checking,
and memory range inference.

In particular, memory check inference could operate
directly on symbolic payloads of Load/Store nodes,
using the existing ValueRange framework for bounds
validation. Control constructs like If, Phi, and Region
would remain in SoN, decoupled from symbolic logic,
preserving SSA-aware flow while enabling future global
optimizations.

This modular layering would make symbolic checks
more robust and expressive while paving the way for
further optimization passes within Droplet’s architecture.

Conclusion
This project set out to explore the feasibility of compile-
time symbolic memory sandboxing for WebAssembly-
based smart contract execution. Motivated by the high
safety and determinism demands of replicated state
machines, we developed a novel LLVM-based pipeline
that statically emits memory bounds checks. Through
the design and implementation of a symbolic algebra
(SymExpr), along with control-flow and loop-aware
analysis, we demonstrated that significant runtime
overhead from naive memory sandboxing can be miti-
gated—achieving up to 80% performance recovery in
representative workloads.

While the scope of this project was ambitious, it served
as a valuable exploration of several promising research
directions. The initial aim to integrate Sea of Nodes
representations, enhance symbolic equivalence tracking,
and implement comprehensive assumption reasoning
laid a strong conceptual foundation, even if not all
components could be fully realized within the project
timeline. In retrospect, the breadth of the endeavor may
have stretched the available development time, but it also
enriched the overall design and opened clear pathways
for future work.

This work yielded meaningful contributions: the sym-
bolic engine showed real speedup in generic loop-heavy
code, hoisting checks in nested control flows, and
enabling memory grouping strategies previously unseen
in the Droplet toolchain. These advances provide a solid
foundation for future efforts in symbolic reasoning and

Page 10

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

static analysis for smart contract safety.

While not all planned components reached full matu-
rity, the core contribution—loop-aware symbolic bounds
checking—demonstrated strong practical value, and its
successful integration into a working compilation pipeline
confirms the viability of symbolic sandboxing for safe, ef-
ficient smart contract execution.

Acknowledgements
I would like to sincerely thank Gauthier Voron for his
guidance, insightful feedback, and for authoring the origi-
nal implementation of Droplet, which laid the foundation
for this work. His support throughout the project has
been deeply appreciated.

I am also grateful to Professor Rachid Guerraoui for
his role as our academic supervisor and for his courses
on distributed and concurrent systems, which greatly
informed the design.

Special thanks go to David Schroeter for his close
collaboration throughout the development of this work.
We worked in parallel on complementary aspects of
the runtime infrastructure, continuously supporting each
other to ensure design coherence and compatibility across
our respective contributions.

ChatGPT was used to assist with phrasing during the
writing of this report, in accordance with EPFL guidelines.
All content was reviewed to ensure accuracy and academic
integrity.

References
1. Dirren EA. Efficient Time Sandboxing for State Machine

Replication-oriented Compilers. Technical Report. Super-
vised by Gauthier Vorona. Lausanne, Switzerland: École
Polytechnique Fédérale de Lausanne (EPFL), 2025 Jan.
Available from: mailto:elija-angelo.dirren@epfl.ch

2. Andriesse D. Practical Binary Analysis: Build Your Own
Linux Tools for Binary Instrumentation, Analysis, and
Disassembly. Print Book and FREE Ebook available. San
Francisco, CA: No Starch Press, 2018 Dec. Available
from: https://practicalbinaryanalysis.com

3. Click C and Cooper KD. Combining analyses, combining
optimizations. ACM Trans. Program. Lang. Syst. 1995
Mar; 17:181–96. DOI: 10 . 1145 / 201059 . 201061.
Available from: https://doi.org/10.1145/201059.201061

4. Click C. From Quads to Graphs: An Intermediate Repre-
sentation’s Journey. 1997 Feb

5. Click C and Paleczny M. A simple graph-based interme-
diate representation. SIGPLAN Not. 1995 Mar; 30:35–
49. DOI: 10.1145/202530.202534. Available from: https:
//doi.org/10.1145/202530.202534

6. Click C and Paleczny M. A simple graph-based intermedi-
ate representation. Papers from the 1995 ACM SIGPLAN
Workshop on Intermediate Representations. IR ’95. San
Francisco, California, USA: Association for Computing
Machinery, 1995 :35–49. DOI: 10.1145/202529.202534.
Available from: https://doi.org/10.1145/202529.202534

7. Muchnick S. Advanced Compiler Design and Implemen-
tation. 1st. Includes case studies from SPARC, POWER,
Alpha, and Pentium compilers. San Francisco, CA: Mor-
gan Kaufmann, 1997 Aug

8. Schinz M. CS-420: Advanced Compiler Construction.
https : / / cs420 . epfl . ch/. Course material, EPFL.
Covers compiler design for functional and object-oriented
languages, including IRs, optimizations, and runtime
systems. 2024

9. Schroeter D. Compiler-Based Microsection Scheduling for
Parallel Smart Contract Execution. 2025. Available from:
mailto:david.schroeter@epfl.ch

Page 11

mailto:elija-angelo.dirren@epfl.ch
https://practicalbinaryanalysis.com
https://doi.org/10.1145/201059.201061
https://doi.org/10.1145/201059.201061
https://doi.org/10.1145/202530.202534
https://doi.org/10.1145/202530.202534
https://doi.org/10.1145/202530.202534
https://doi.org/10.1145/202529.202534
https://doi.org/10.1145/202529.202534
https://cs420.epfl.ch/
mailto:david.schroeter@epfl.ch

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Appendix

Per-Benchmark Visualization and Analysis
Each benchmark in this appendix follows a consistent structure to aid in interpreting performance and optimization effects:

• Pseudocode (left): A concise algorithmic summary of the test kernel, illustrating memory access and control flow
patterns critical for symbolic analysis.

• Execution trace (right): A runtime profile displaying execution time distributions and batch-level variance.
Benchmarks are executed repeatedly with randomly ordered .so module loads to simulate cache effects and
interference akin to multi-contract execution.

• Optimization comparison (bottom): Execution times under different sandboxing and optimization configurations,
revealing both overhead and performance improvements.

Two batch sizes of 65 536 and 32 464 are used to evaluate sensitivity to input scale and runtime variability.

Algorithm 1: 2d.c — Increment square matrix
elements
Input : data – a pointer to a memory buffer

size – the total size (in bytes) of the
buffer
Output: Returns 0

Let ptr ← reinterpret data as array of 64-bit
integers;

Let nb_elem ← size / sizeof(uint64_t);
Let dim ← ⌊

√
nb_elem⌋;

Initialize b ← 0;

for i ← 0 to dim− 1 do
for j ← 0 to dim− 1 do

ptr[i · dim+ j] ← ptr[i · dim+ j] +1;

return 0;

Figure 3: Execution trace visualization of 2d.c

Page 12

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Algorithm 2: add1.c — Increment each array
element
Input : data – a pointer to a memory buffer

size – the total size (in bytes) of the
buffer
Output: Returns 0

Let ptr ← reinterpret data as array of 64-bit
integers;

Let nb_elem ← size / sizeof(uint64_t);
Initialize b ← 0;

for a← 0 to nb_elem− 1 do
ptr[a] ← ptr[a] +1;

return 0; Figure 4: Execution trace visualization of add1.c

Algorithm 3: addbounded.c — Bounded incre-
ments and nested accumulation
Input : data – a pointer to a memory buffer

size – the total size (in bytes) of the
buffer
Output: Returns the accumulated result of nested

increments

Let ptr ← reinterpret data as array of 64-bit
integers;

Let nb_elem ← size / sizeof(uint64_t);
Initialize b ← 0;

for a← 150 to 1 by −1 do
ptr[a] ← ptr[a] +2;
b ← b + fun(ptr);

return b;

Function fun(ptr):
Initialize tmp ← 0;
for i ← 0 to 99 do

ptr[i] ← ptr[i] +1;
tmp ← tmp + ptr[i];

return tmp;

Figure 5: Execution trace visualization of addbounded.c

Page 13

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Algorithm 4: conditional.c — Increment only even
elements
Input : data – a pointer to a memory buffer

size – the total size (in bytes) of the
buffer
Output: Returns 0

Let ptr ← reinterpret data as array of 64-bit
integers;

Let nb_elem ← size / sizeof(uint64_t);
Initialize b ← 0;

for a← 0 to nb_elem− 1 do
if ptr[a] mod 2 = 0 then

ptr[a] ← ptr[a] +1;

return 0;
Figure 6: Execution trace visualization of conditional.c

Page 14

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Algorithm 5: fibonaccilike.c — Fill buffer with
Fibonacci-like values
Input : data – a pointer to a memory buffer

size – the total size (in bytes) of the
buffer
Output: Returns the last value in the buffer

Let buf ← reinterpret data as array of 64-bit
integers;

Let n ← size / sizeof(uint64_t);

if n < 3 then
return 0;

for i ← 2 to n− 1 do
buf[i] ← buf[i − 1] + buf[i − 2];

return buf[n− 1];

Figure 7: Execution trace visualization of fibonaccilike.c

Page 15

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Algorithm 6: matrix.c — Multiply two square
matrices (A × B → C)
Input : data – a pointer to a memory buffer

size – the total size (in bytes) of the
buffer
Output: Returns C[0] after matrix multiplication

Let buffer ← reinterpret data as array of 64-bit
integers;

Let nb_elem ← size / sizeof(uint64_t);
Let n ← 1;
while n · n · 3 ≤ nb_elem do
n ← n + 1;

n ← n − 1;
if n = 0 then

return 0;

Let A ← buffer;
Let B ← buffer + n · n;
Let C ← buffer + 2 · n · n;

for i ← 0 to n − 1 do
for j ← 0 to n − 1 do

Initialize sum ← 0;
for k ← 0 to n − 1 do

sum ← sum + A[i · n+ k] · B[k · n+ j
];

C[i · n + j] ← sum;

return C[0];

Figure 8: Execution trace visualization of matrix.c

Page 16

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Algorithm 7: nested.c — Increment elements in
blocks of 4
Input : data – a pointer to a memory buffer

size – the total size (in bytes) of the
buffer
Output: Returns 0

Let ptr ← reinterpret data as array of 64-bit
integers;

Let nb_elem ← size / sizeof(uint64_t);
Initialize b ← 0;

for i ← 0 to nb_elem/4− 1 do
for j ← 0 to 3 do

ptr[i · 4 + j] ← ptr[i · 4 + j] +1;

return 0;
Figure 9: Execution trace visualization of nested.c

Algorithm 8: prefix.c — In-place prefix product
computation
Input : data – a pointer to a memory buffer

size – the total size (in bytes) of the
buffer
Output: Returns the last element of the modified

buffer

Let buf ← reinterpret data as array of 64-bit
integers;

Let n ← size / sizeof(uint64_t);
if n = 0 then

return 0;

for i ← 1 to n− 1 do
buf[i] ← buf[i] · buf[i − 1];

return buf[n− 1];

Figure 10: Execution trace visualization of prefix.c

Page 17

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Algorithm 9: redundant.c — Redundant bounds
check during iteration
Input : data – a pointer to a memory buffer

size – the total size (in bytes) of the
buffer
Output: Returns 0

Let ptr ← reinterpret data as array of 64-bit
integers;

Let nb_elem ← size / sizeof(uint64_t);
Initialize b ← 0;

for a← 0 to nb_elem− 1 do
if a < nb_elem then

ptr[a] ← ptr[a] +1;

return 0;

Figure 11: Execution trace visualization of redundant.c

Page 18

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Algorithm 10: reverse.c — Reverse-order element
increment
Input : data – a pointer to a memory buffer

size – the total size (in bytes) of the
buffer
Output: Returns 0

Let ptr ← reinterpret data as array of 64-bit
integers;

Let nb_elem ← size / sizeof(uint64_t);
Initialize b ← 0;

for a← nb_elem− 1 to 0 by −1 do
ptr[a] ← ptr[a] +1;

return 0; Figure 12: Execution trace visualization of reverse.c

Algorithm 11: slidewindow.c — Sliding window
average of 5 elements
Input : data – a pointer to a memory buffer

size – the total size (in bytes) of the
buffer
Output: Returns the first element of the modified

buffer

Let buf ← reinterpret data as array of 64-bit
integers;

Let n ← size / sizeof(uint64_t);
if n < 5 then

return 0;

for i ← 0 to n − 5 do
buf[i] ←

(buf[i]+ buf[i + 1]+ buf[i + 2]+
buf[i + 3]+ buf[i + 4]) / 5;

return buf[0];

Figure 13: Execution trace visualization of slidewindow.c

Page 19

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Algorithm 12: stride.c — Increment every other
element (stride 2)
Input : data – a pointer to a memory buffer

size – the total size (in bytes) of the
buffer
Output: Returns 0

Let ptr ← reinterpret data as array of 64-bit
integers;

Let nb_elem ← size / sizeof(uint64_t);
Initialize b ← 0;

for a← 0 to nb_elem− 1 by 2 do
ptr[a] ← ptr[a] +1;

return 0; Figure 14: Execution trace visualization of stride.c

Smart Contract template
To ensure compatibility with Drizzle and Droplet, all benchmarks were adapted to a standardized C template. This
interface, largely designed and implemented by David Schroeter as part of his foundational work "Compiler-Based
Microsection Scheduling for Parallel Smart Contract Execution"[9], provides essential entry points and memory hooks
for Drizzle execution. I am deeply grateful for David’s contributions and ongoing collaboration, which have been critical
in enabling and maintaining integration with our symbolic analysis pipeline.

The wrapper defines a fixed-size linear memory buffer (wrapper_memory) and exposes its base address via
get_wrapper_memory_addr(), enabling Droplet and Drizzle to locate and structure memory in a concurrent environment.
It also includes exported allocation and deallocation routines (alloc and dealloc) for allocation logic. The primary

contract logic is implemented in droplet_entry(), with an optional installation phase in droplet_install() useful for
preparing the smart contract.
Additional hooks like dump() and entry_ret_u64() support contract state inspection and automated testing.

Page 20

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

These wrapper functions define the contract between user-level smart contract code and environment, allowing the
entire pipeline to operate robustly across a range of test cases while preserving compatibility with Drizzle.

Page 21

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Listing 1: Template of contract implementation in C

1 #include <stdint.h>
2 #include <stddef.h>
3

4 #define WASM_MEMORY_SIZE 65536
5

6 #define WASM_EXPORT(name) \
7 __attribute__((export_name(#name))) \
8 name
9

10 static char wrapper_memory[WASM_MEMORY_SIZE] = { 0 };
11

12 // That function is needed only so that droplet can know where the beginning of the wrapper memory is.
13 void* WASM_EXPORT(get_wrapper_memory_addr)() {
14 return &wrapper_memory;
15 }
16

17 __attribute__((noinline))
18 void* WASM_EXPORT(alloc)(size_t size) {
19 // user defined its malloc function to use
20 return malloc(size);
21 }
22

23 void WASM_EXPORT(dealloc)(void* ptr) {
24 // user define how to free with its malloc
25 return free(ptr);
26 }
27

28 // The smart contract
29 void WASM_EXPORT(droplet_entry)(void *data, size_t len, uint64_t user) {
30 // To implement by user
31 }
32

33 // The smart contract installation
34 void WASM_EXPORT(droplet_install)(void *data, size_t len)
35 {
36 // To implement by user
37 }
38

39 // Function to dump the content
40 void WASM_EXPORT(dump)(int fd) {
41 //
42 }
43

44 // Function used in testing runtime
45 uint64_t WASM_EXPORT(entry_ret_u64)(void* data, size_t size) {
46 //Only used in this work runtime to be able to directly have a return value
47 }

Page 22

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Build and Execution Instructions
The symbolic compilation runtime and all associated tooling for this work are available at:
https://github.com/2Tricky4u/SemesterProject

Environment Requirements and Dev Container
To ensure compatibility with the LLVM APIs used by inkwell, the runtime must be built using LLVM version 16. A
ready-to-use Docker-based development container is provided for this purpose in .devcontainer.

Dockerfile.The container sets up a full Rust and LLVM 16 toolchain in Ubuntu 22.04:

Listing 5: Excerpt from Dockerfile

FROM ubuntu : 2 2 . 0 4
. . . (i n s t a l l LLVM 16 , Rust , b u i l d t o o l s)
ENV LLVM_SYS_160_PREFIX="/ u s r / l i b / l l vm −16"
WORKDIR / p r o j e c t

devcontainer.json.The development container includes IDE integration with Rust Analyzer and LLDB:

Listing 6: Excerpt from devcontainer.json

{
"name" : " d r o p l e t − d e v c o n t a i n e r " ,
" image " : " ubuntu : 2 2 . 0 4 " ,
" f e a t u r e s " : {

" r u s t " : {" v e r s i o n " : " s t a b l e " } ,
. . .

} ,
" postCreateCommand" : " bash ␣ . d e v c o n t a i n e r / s e t up . sh "

}

Feature Flags and Compilation Options
The symbolic pipeline is feature-gated to allow fine-grained control over optimization and UTX emission strategies.
Relevant flags in Cargo.toml include:

• test-entrypoint – enables the contract test entry usage (entry_ret_u64)

• load-store-in-bound-check – inserts naive bounds checks

• avoid-already-checked, naive-intra, inter-check-opt – progressively enable intra- and inter-block memory
optimizations

• base-ptr-opt - avoid the memory check access to base pointer if assumed as safe

• llvm-opti - enable the clang optimisation of code needed for current optimizations

• inline-memory-check - annotate llvm .bc mem_check function to recommend inlining instead of call

• utxemit-v1, utxemit-v2, utxemit-v3 – control UTX emission variants

Build Pipeline Overview
Benchmarks are compiled and transformed in four phases:

1. C to Wasm: Each .c benchmark is compiled to .wasm with Clang using the Wasm64 backend and optimizations
disabled as needed.

2. Droplet Transform: For each configuration (e.g., opt1, opt2, etc.), cargo build compiles the droplet binary
with selected feature flags, which is then used to transform .wasm files into LLVM .bc bitcode.

3. Link to .so: The bitcode is linked with trap.o and compiled into shared libraries using Clang-16.

4. Execution: The resulting .so files can be executed via the testing runtime to gather benchmark traces.

Page 23

https://github.com/2Tricky4u/SemesterProject

Symbolic LLVM Memory Sandboxing for Safe and Deterministic WebAssembly Execution EPFL – Spring 2025

Automated Build ScriptA complete pipeline script automates this process and logs outputs for reproducibility as
compile_sandox.sh in test folder. Failed steps are logged in test/sandbox/logs/, and successful builds are emitted to
test/sandbox/obj/.

To reproduce a manual compilation, follow the steps given below.

Listing 7: Snippet for .so compilation

c l ang −16 −O2 −− t a r g e t =wasm64 −D__WASM__ −c f i l e . c −o f i l e . wasm
ca rgo b u i l d −− f e a t u r e s " t e s t − e n t r y p o i n t ␣ base −pt r −opt " −−package d r o p l e t
d r o p l e t f i l e . wasm f i l e . bc
c l ang −16 −O0 − s h a r e d f i l e . bc t rap . o −o f i l e . so

This setup ensures reproducible experiments and easy toggling of symbolic optimization passes for comprehensive
benchmark evaluation.

Page 24

	Introduction
	Overview and Contributions

	Background
	Deterministic Replicated Execution
	WebAssembly and Its Linear Memory Model
	LLVM IR and SSA Form
	Symbolic Expression Concepts
	Phi Nodes and Symbolic Ambiguity
	Control-Flow Graphs and Dominator Trees
	Loop Detection and Induction Variables

	Design
	Memory Group Checking via LLVM IR
	Assumption-Based Check Elision (Preliminary)
	Initial Strategy: Symbolic Deduplication
	Refined Strategy: Function-Wide Symbolic Analysis
	Post-Loop and Residual Check Insertion

	Implementation
	Memory Check Runtime Stub
	Symbolic Expression (SymExpr)
	Assumptions and ValueRange
	The Symbolic State
	Tracking Memory Accesses and Store Counter

	Loop-Aware Optimization
	Memory Access Modeling and Grouping
	Memory Check Insertion Strategy

	Evaluation
	Benchmark Structure and Methodology
	Setup
	Question
	Observation
	Deduction
	Conclusion

	Future Work: Integrating SymExpr with Sea of Nodes
	Conclusion
	Per-Benchmark Visualization and Analysis
	Smart Contract template
	Build and Execution Instructions

