
CS-523 SMCompiler Report
Stuart Gueissaz, Kilian Lauener, Xavier Ogay

Abstract—This report presents a secure multi-party compu-
tation (SMC) engine developed in Python 3. The engine uses
additive secret sharing and a trusted third party to perform
secure arithmetic operations within a semi-honest adversarial
model. Key operations include addition, subtraction, and multi-
plication using the Beaver triplet protocol. The SMC framework
was applied to securely aggregate refugee data and financial
contributions among EU member states, ensuring privacy and
accurate decision-making.

I. INTRODUCTION

This report details the development and application of a
secure multi-party computation (SMC) engine, implemented
in Python 3, as part of the CS-523 course. The project aims
to enable secure computations on arithmetic circuits within
a semi-honest adversarial setting, leveraging the presence
of a trusted third party to facilitate secure operations. The
overarching aim of the implemented SMC framework is to
maintain the privacy of inputs while securely performing
computations on arithmetic circuits. This is accomplished by
employing additive secret sharing and utilizing a trusted third
party for secure operations, including addition, subtraction,
scalar multiplication, and multiplication using the Beaver
triplet protocol.

We worked mainly together to grasp a full understanding
of the project, also such that each member worked equally.

II. THREAT MODEL

The framework operates within a semi-honest (passive)
adversarial model. In this context, adversaries are assumed
to adhere to the protocol correctly but may attempt to extract
additional information from the messages they receive. The
design of the framework ensures that even in the presence of
collusion among participants, no private input information is
disclosed beyond what is inferable from their own inputs and
the final output.

The framework relies on a trusted third party to facilitate
secure computations, particularly for operations that require
shared randomness or precomputed values, such as those in
the Beaver triplet protocol.

III. IMPLEMENTATION DETAILS

We started by implementing expressions, we then went onto
implementing the basic arithmetic operations on the Share
class. The choice of prime for the field is rather arbitrary,
we chose a prime of the appropriate size, here we went with
a 64 bits hardcoded prime number. Given that the field is a
public parameter, a hardcoded prime works well. For addition
of scalars only participant 0 does it, same goes for the beaver
case, only the participant 0 adds the −(x − a)(y − b) final
terms.

IV. PERFORMANCE EVALUATION

Our performance evaluations measured the communication
costs and runtime of the SMC framework for scalar additions,
scalar multiplications, and general arithmetic operations. The
results are summarized below.

A. Communications Costs
Table I and II represent the situation where only constants

scalar are added or multiplied together. Table III and IV rep-
resent one secret per participants that are added or multiplied
all together. Table V and V I represent 5 secret per participant.

Notes that the Mean total bytes is the count of bytes
exchanged (sent and received) during the whole protocol by
every parties. The Mean bytes received/sent are the mean
numbers of bytes exchanged, computed on each individual
parties during a protocol run.

TABLE I: Communications on scalar additions
Nb of add. Mean total bytes Mean bytes received Mean bytes sent

10 136.53 ±1.28 5.00 ±0.00 40.51 ±1.19

100 140.37 ±1.26 6.00 ±0.00 40.79 ±1.61

500 144.72 ±1.29 7.00 ±0.00 41.24 ±2.01

1000 144.23 ±1.59 7.00 ±0.00 41.08 ±2.09

TABLE II: Communications on scalar multiplications
Nb of mult. Mean total bytes Mean bytes received Mean bytes sent

10 136.41 ±1.56 5.00 ±0.00 40.47 ±1.26

50 160.26 ±1.38 11.00 ±0.00 42.42 ±3.85

100 180.58 ±1.53 16.00 ±0.00 44.19 ±6.16

TABLE III: Communications on general additions
Nb of add. Mean total bytes Mean bytes received Mean bytes sent

10 5632.47 ±25.36 369.07 ±2.59 194.17 ±1.93

20 22886.14 ±44.08 756.11 ±3.35 388.19 ±3.02

30 51884.00 ±128.14 1147.28 ±4.90 582.19 ±3.28

40 92287.00 ±114.27 1531.12 ±4.57 776.05 ±3.76

60 208294.29 ±196.14 2307.66 ±5.47 1163.91 ±5.06

TABLE IV: Communications on general multiplications
Nb of mult. Mean total bytes Mean bytes received Mean bytes sent

10 51161.14 ±43.42 4573.06 ±5.01 543.06 ±2.99

20 362443.86 ±217.77 16997.13 ±10.55 1125.06 ±4.58

30 1167500.71 ±1148.11 37209.23 ±34.79 1707.46 ±5.99

TABLE V: Communication costs for general addition with
different numbers of participants with 5 secrets each

Participants Mean total bytes Mean bytes received Mean bytes sent
5 2716.92 ±10.79 368.65 ±2.73 310.58 ±2.23

10 19596.14 ±37.61 1067.41 ±4.14 892.2 ±4.10

30 186762.57 ±87.09 3393.73 ±7.73 2831.69 ±6.94

TABLE VI: Communication costs for general multiplication
with different numbers of participants with 5 secrets each

Participants Mean total bytes Mean bytes received Mean bytes sent
5 23477.14 ±33.67 4822.29 ±7.99 1047.00 ±4.73

10 267421.71 ±220.70 23949.41 ±20.37 2792.76 ±7.99

30 5916371.00 ±2419.19 188599.60 ±74.39 8612.76 ±11.97



B. Runtime

TABLE VII: Runtime for operations
Operation Nb of operations Mean runtime (ms) Std Dev (ms)

Scalar addition 10 14.10 0.70
Scalar addition 100 14.20 0.58
Scalar addition 500 14.88 0.62
Scalar addition 1000 15.13 1.32

Scalar multiplication 10 14.62 1.56
Scalar multiplication 50 14.68 1.22
Scalar multiplication 100 23.60 4.69

General addition 5 29.86 2.78
General addition 10 83.35 6.31
General addition 20 322.69 15.86
General addition 30 694.97 24.21
General addition 40 1262.81 51.28
General addition 60 2846.07 67.61

General multiplication 5 99.21 12.45
General multiplication 10 613.42 28.22
General multiplication 20 4471.92 44.99
General multiplication 30 14827.38 155.94

Fig. 1: Runtime for general operations

Based on the graphs provided, we can draw several con-
clusions about the runtime performance of scalar and general
operations:

• Scalar Operations: Given the little reliance on the net-
work these operations naturally scale very well.

• General Operations: The addition of secrets is as ex-
pected linear in the number of secrets. Multiplication
require new beaver triplets for each of them, the growth
is much larger and limits the scalability of the process.

TABLE VIII: Runtime for X participants with 5 secrets
Operation Nb of participants Mean runtime (ms) Std Dev (ms)

General addition 5 51.59 4.72
General addition 10 286.77 26.44
General addition 30 2494.89 36.73

General multiplication 5 276.82 9.55
General multiplication 10 3118.82 30.72
General multiplication 30 76496.09 565.27

Fig. 2: Runtime for X participants with 5 secrets

We note the difference when participants hold a single
secret or when the secret are spread among the participants
the growth is more controlled.

V. APPLICATION

The European Union (EU) often needs to coordinate the
reception of refugees and the allocation of related financial
support among its member states. To address privacy concerns
and ensure fair participation, a secure multi-party computa-
tion (SMC) framework is proposed. This framework securely
aggregates the number of refugees and the funds provided
by each country without revealing individual data during the
computation process.

A. Aim
The aim is to securely compute the total number of refugees

the EU can welcome and the total funding required, using
inputs from multiple countries while preserving the privacy of
each country’s contributions during the computation process.

B. Adversarial Model
We assume a semi-honest adversarial model where parties

follow the protocol correctly but may try to learn additional
information from received messages. The SMC protocol en-
sures that no individual party can infer the contributions of
others during the computation.

C. SMC Protocol
The protocol involves each country submitting two secrets:

the number of refugees they can welcome and the amount of
money they can provide per refugee. The following steps are
performed:

1. Compute the total number of refugees:

Total refugees =
n∑

i=1

refugeesi

2. Compute the total cost:

Total Cost =

(
n∑

i=1

refugeesi

)
×

(
n∑

i=1

money per refugeei

)
D. Use Case Description

The application securely computes the total number of
refugees the EU can welcome and the total cost of receiving
these refugees. This can be applied to secure planning and
budgeting for humanitarian efforts. The results of the compu-
tation are then used by the EU to vote on the approval of the
proposed budget. Each member state can subsequently agree
or disagree with the total number of refugees and the total
needed budget, knowing exactly how much they will need to
contribute.

To ensure dynamic and continuous assessment, member
states are required to use this system continuously until the
vote passes. They can change their input (number of refugees
they can welcome and the amount of money they can provide)
at any time during this period. If the vote passes, all informa-
tion regarding the individual contributions will be disclosed to
ensure transparency and accountability.


	Introduction
	Threat model
	Implementation details
	Performance evaluation
	Communications Costs
	Runtime

	Application
	Aim
	Adversarial Model
	SMC Protocol
	Use Case Description


