
CS-523 SecretStroll Report
Stuart Gueissaz, Kilian Lauener, Xavier Ogay

Abstract—We worked mainly together to grasp a full under-
standing of the project, also such that each member work equally.

I. INTRODUCTION

The project aims to develop a privacy-focused location-
based service application, addressing concerns around lo-
cation tracking. The app provides users with details about
nearby Points of Interest (POIs) only when requested, with
anonymous authentication mechanism using attribute-based
credentials avoiding continuous location tracking. This design
emphasizes user privacy.

Each stage of the implementation will be carefully designed
to address the identified privacy risks while maintaining the
functionality and user experience of conventional location-
based services. This approach aligns with modern privacy
standards and user expectations for data security.

II. ATTRIBUTE-BASED CREDENTIAL

We implemented Pointcheval-Sanders scheme into the
system by carefully following the guide provided in the
lecture notes. Which consisted mainly of translating the
guide’s formulas into Python code, and thinking about what
to return from each function or how to define our types.

Among the six options of attributes given, we chose to use
the first option:

• User attributes = [secret key]
• Issuer attributes = [all subscriptions; username]

First, we thought we needed to use option 4 as the project
description advises us to use a secret key in the credentials.
But after some reflection, we realized that the issuer attributes
are revealed during the process so Option 4 makes no sense.
Option 2 makes the user reveal no attributes, which is not
considered good practice. We excluded Options 3 and 4
because putting all subscriptions in the user attributes makes
it impossible to ensure the user accesses only subscriptions
they paid for. Option 6 is not viable as the user name is part
of the user and issuer attributes which can’t be in a sane
ABC. We hesitated to choose option 5 as it could be a viable
option too but preferred to stay on option 1 as we wanted
to give the same number of attributes to all users. So that
signature have the same number of total attributes.
We reveal only the subscriptions the user decides to reveal
(−T option in the CLI). The secret key and username stay
secret so the users are not identifiable based on the credentials
they show.
All users have the same number of attributes hence, when
two requests reveal the same attributes, they have the same

number of hidden attributes as well. The subscriptions a user
did not pay for are placed as empty strings in the signature,
so they cannot cheat the payment system. The credentials we
implemented have strong guarantees of anonymity. The data
of the request itself may reveal more about the user though.

We used the Fiat-Shamir heuristic to make SecretStroll’s
zero-knowledge proofs non-interactive by building a challenge
by hashing all the public information, then we built a Pedersen
commitment to prove our signature was produced correctly.
We helped ourselves by having a glimpse of the document
”Zero-knowledge Proofs of Knowledge for Group Homomor-
phisms” from Ueli Maurer[1].
The challenge is built as SHA256(commitment||pk) for the
issuance request and as SHA256(commitment||pk||msg) for
disclosure proofs.
This challenge replaces the challenge we would expect from
the verifier during a Pedersen commitment. The Pedersen
commitment was adapted as follows in the system:
For each attribute i the user wants to include in their cre-
dentials, they select a random ri ∈ Zq and produce the map
(i → ri − c ∗ ai)∀i ∈ U , they also include a (−1 → rt − ct)
to take into account the secret t mixed in the signature. c is
the challenge produced before.

A. Test

We made some end-to-end tests and checked that the results
and parameters were correct. We also thought of trying to
compute manually some values to check if the results were
similar but gave up as too much effort and we thought that
if the end-to-end tests passed there would be a really small
chance that a direct comparison would fail.

To assess the effectiveness of our tests, one ensures that
our function pairs (e.g. sign and verify) work well in pairs.
Negative tests were also used to guarantee some robustness
in our functions. We mostly test at the API level of the
credentials.py file.

B. Evaluation

Benchmarks were run on the following config:
CPU: 12th Gen Intel i7-1265U (12) @ 4.800GHz
GPU: Intel Alder Lake-UP3 GT2 [Iris Xe Graphics]
Memory: 15429MiB

TABLE I: Performance of credentials functions

Function Mean µs Std µs
sign 154.0333 6.6702

create issue request 467.5993 44.7829
sign issue request 515.2935 57.0500

generate key 711.0807 44.5075
verify 1,423.2856 122.9270

obtain credential 1,496.4228 129.5842
create disclosure proof 2,991.3522 434.9541

TABLE II: Performance of stroll functions

Function Mean µs Std µs
check request signature 744.8391 12.6509

generate ca 1,185.6771 83.4768
prepare registration 1,127.9398 17.4776
process registration 1,711.6663 23.3021

process registration response 2,737.6184 33.9735
sign request 7,046.5992 72.7100

The issuance protocol part takes in mean time:
5,740.4179 µs ± 76.0788 (std)
The complete protocol with fixed parameters (username,
subscriptions, and user subscriptions) takes in meantime:
10,433.8949 µs ± 104.3411 (std)
The complete protocol with randomness in parameters
(username, subscriptions, and user subscriptions) takes in
meantime:
15,785.2529 µs ± 130.7568 (std)

III. (DE)ANONYMIZATION OF USER TRAJECTORIES

A. Privacy Evaluation

Given the simulated queries, the adversary would most
likely be the server itself. The use of ABC is coherent with the
data since users are authenticated anonymously. We suppose
that user do not change IP addresses hence their data can still
be grouped by IP. Another possible adversary would be one
performing a passive man in the middle between users and
providers. In all the strategies above, we have users not using
Tor and only pseudo-anonymous given their IP.

Be it the malicious server or the man in the middle, the
adversaries can gather quite a lot of information given the

location data and the POI chosen. For the first and second
attacks, both adversaries can execute them but at different
scales, an adversary man in the middle could only attack to
the scale of one IP while the adversary server could do it at
the scale of every user. On the other hand, the third and last
attack can only be executed by an adversary having access to
all the queries performed (e.g. leak of the server query history
or the server being malicious).

The first attack is leaking the favorite hobby of each IP by
just searching the most queried type of POIs by IP.

TABLE III: Favorite Hobby

ip address favorite hobby

0.98.248.97 dojo
10.229.150.53 dojo
100.255.65.73 dojo
101.193.212.180 gym
103.107.27.105 gym

The second attack consists of leaking the top three locations
of the IP and inferring the type of location between Home,
Work, and Activity. To be able to infer the type, we need
to translate the timestamp of the queries into two categories:
work time and free time. We decided to choose work time for
the query sent during the interval of 9h00 and 17h00 from
Monday to Friday and otherwise choose free time. From that
we took the top localization during work time as the work
localization, the top localization during free time as the home
localization, and finally the second top localization during free
time as the activity localization.

TABLE IV: Home localisation

ip address home lat home lon

0.98.248.97 46.510700 6.628843
10.229.150.53 46.558368 6.599673
100.255.65.73 46.555607 6.605922
101.193.212.180 46.535992 6.622526
103.107.27.105 46.538470 6.627223

TABLE V: Work localisation

ip address work lat work lon

0.98.248.97 46.546740 6.577377
10.229.150.53 46.546377 6.575353
100.255.65.73 46.527792 6.597571
101.193.212.180 46.542422 6.577282
103.107.27.105 46.546377 6.575353

TABLE VI: Activity localisation

ip address activity lat activity lon

0.98.248.97 46.513656 6.629130
10.229.150.53 46.556655 6.596498
100.255.65.73 46.549880 6.609449
101.193.212.180 46.537596 6.627838
103.107.27.105 46.535992 6.622526

The third attack is to infer the type of home, work, and
activity of an IP by linking the localization to the closest POI
of a possible type for it.

TABLE VII: Type of home, work and activity

ip address home type work type activity type

0.98.248.97 appartment block laboratory restaurant
10.229.150.53 appartment block laboratory club
100.255.65.73 villa office dojo
101.193.212.180 villa company cafeteria
103.107.27.105 villa laboratory villa

The last attack consists of finding link between different IPs
like neighbors, colleagues or people with the same activity by
using, similarly as the third attack, the closest POI of the home,
work and activity and searching people with the same POI ID.

TABLE VIII: Work colleagues

ip address work colleagues

0.98.248.97 [’138.53.90.242’, ’204.146.211.61’]
10.229.150.53 [’103.107.27.105’, ’139.251.47.207’, ...]
100.255.65.73 [’129.133.79.138’, ’200.20.52.81’, ...]
101.193.212.180 [’13.191.142.105’, ’237.144.218.252’, ...]
103.107.27.105 [’10.229.150.53’, ’139.251.47.207’, ...]

TABLE IX: Home neighbors

ip address home neighbors

0.98.248.97 []
10.229.150.53 [’203.24.85.254’]
100.255.65.73 []
101.193.212.180 [’115.186.150.175’]
103.107.27.105 [’132.111.36.105’]

TABLE X: Activity friends

ip address activity friends

0.98.248.97 []
10.229.150.53 [’135.104.79.52’, ’233.228.129.122’]
100.255.65.73 []
101.193.212.180 [’115.186.150.175’]
103.107.27.105 []

After executing our 4 attacks, we came to the conclusion
that there are certainly way more leakages and exploits possi-
ble from an adversary server.

B. Defences

There 3 main leaks in privacy: the points of interest looked
up, the location itself and the timestamp of the query.

Given the real-time nature of the app, there is nothing a
user can do to hide the query time. The server knows when
it received it and the user doesn’t want to wait a random
amount of hours before sending the query and getting an
answer.

The point of interest is quite tricky as well. We could
imagine something similar to k-Anonymity:
The user always queries for at least k POIs at the same time
so the adversary cannot guess which one they really are
interested in. Against a naive adversary, this would leave them
a 1/k chance of guessing right. This solution has multiple
issues, first, it would break the subscription system. Even if
we ignore that, it will not work against a strategic adversary.
If the k − 1 other POIs are chosen randomly, an adversary
will still observe a single POI that the user would query more
than uniformly. If instead of choosing randomly, we had
predefined categories, then either the element of the category
shares semantic similarities e.g. bar, restaurant, coffee shop in
which case they still leak information about the user habits.
Or the categories do not share semantic similarities in which
case the timestamp of the query could reveal which one the
user really wanted (e.g. dinner time).

Finally, the location itself, we can apply laplacian noise
on it. This is the most solid way of proceeding but still has
caveats. First, there is a need for an appropriate noise level.
The higher it is, the less relevant are the result for the user.
Let us model the privacy and utility for secret-stroll:

The user looks for POIs in distance R of their position. By
applying noise to their position, they approach the edge of this
R-diameter circle around them. The bigger the noise, the more
out-of-scope their result. We applied different levels of noise
to determine how much of a utility loss and privacy gain it
meant.

We defined utility as the difference between what answer
the user would get on the original query and the one with
added noise.

TABLE XI: Utility loss per noise level

Noise Accuracy
laplace(0, 0.0001) 97.8%
laplace(0, 0.0003) 93.9%
laplace(0, 0.0005) 89.9%

The privacy gains are determined as follows, we consider
the data inferred in our attacks as ground truth (best-case
scenario). Then we perform the same analysis on the noised
data and compare the changes in results, the more changes,
the bigger the privacy gains. This noise mechanism offers
deniability to the user.

TABLE XII: privacy gains per noise level

Category 0, 0.0001 0, 0.0003 0.0005
hobby 0% 0% 0%

home type 52% 52% 55.5%
home neighbours 96.5% 95% 96.5%

work type 20.5% 22.5% 27%
work colleagues 88.5% 93.5% 95%

activities 83.5% 85% 86%
hobby friends 65% 61.5% 62.5%

We can see that the hobby category is insensitive to noise
which is expected given that it only relies on POIs asked in

the query. As we explained above, this is unavoidable without
changing the core of the app.

Some results above are surprising with some outliers like
the hobby friends category. Overall the noise levels 0.0003 and
0.0005 both seem to offer fair privacy gains while keeping the
utility of the data.

IV. CELL FINGERPRINTING VIA NETWORK TRAFFIC
ANALYSIS

A. Implementation details

To ease the trace collection process, we wrote a rather
simple bash script meant to be run in the client docker. This
script runs the following query for each grid i:
python3 client.py grid $i -T restaurant -t
while tshark runs in the background. Once the query
returns, tshark is stopped, and the resulting trace is placed
in grid_i/c_j.pcap where j is the jth data collection.
With this method, we retrieved 2600 traces (ie. 26 traces per
grid point).

The traces were then read using Python. Pyshark was
used to read them, and filter them such that we only had
relevant packets left (ie. between Tor node and the user, no re-
transmission packets, only TCP etc...). The following features
were extracted per trace and used for the classifier:

• Packet count : Total number of packets in the trace
• Outgoing packet : Number of packets sent by the user
• Incoming packet : Number of packets with user as

destination
• Mean packet per second : The mean ratio of total

packets per seconds
• Std packet per second : The standard deviation of the

packet per second
• Ratio out/total : The ratio of outgoing packets com-

pared to the total number of packets
• Ratio in/total : The ratio of incoming packets com-

pared to the total number of packets
• Mean of seq : The mean of total number of the se-

quence numbers of packets
• Std of seq : The standard deviation of the sequence

numbers of packets
• Cap size : The total content size of the .pcap file
• Outgoing packet biggest leni : The 5 biggest size of

outgoing packet
• Incoming packet biggest leni : The 5 biggest size of

incoming packet
• Mean p/s i : The mean value of the packets seconds

of the ith of the 15 interval evenly spaced over the trace
duration

To see how we compute those features, take a look at the
compute stats.py file. The classifier is a RandomForest with
650 number of estimator.

B. Evaluation

Here is our evaluation of our classifier – the metrics after
10-fold cross-validation.

Metric Average Median Std Dev
Accuracy 0.967692 0.965385 0.00753689
Precision 0.976388 0.975508 0.00560757
Recall 0.967692 0.965385 0.00753689
F1 Score 0.966766 0.964274 0.00764109

C. Discussion and Countermeasures

Considering that our predictive model operates within a
grid of 100 possible outcomes, the performance achieved
is notably impressive. This achievement is particularly
significant when compared to the expected accuracy of a
random classifier, which would have only a 1% (1 in 100)
chance of correctly predicting a grid location. Now even with
the usage of Tor we can correctly infer the grid location most
of the time.

The network is an unreliable resource, packets may
be dropped, reordered, or heavily slowed down in an
unpredictable manner such that it can influence the
performance of the classifier. All that causes noise in
the capture. The usage of Tor makes it even worse as the
path our packets take is longer and goes through machines of
variable performance.

Our attacks rely mostly on the number of packets the
server answers which is correlated to the queried grid (e.g.
grid 1 may have 1 poi where grid 41 has 8). To implement
countermeasures, we need to make the query and its answer
independent from the view of an eavesdropper. One way is to
have the server answer the same number of times and make
sure each answer is of the same length.

REFERENCES

[1] U. Maurer, “Zero-knowledge proofs of knowledge for group homomor-
phisms,” Designs, Codes and Cryptography, vol. 77, pp. 663–676, 2015.

	Introduction
	Attribute-based credential
	Test
	Evaluation

	(De)Anonymization of User Trajectories
	Privacy Evaluation
	Defences

	Cell Fingerprinting via Network Traffic Analysis
	Implementation details
	Evaluation
	Discussion and Countermeasures

	References

